a2 United States Patent

US009235610B2

(10) Patent No.: US 9,235,610 B2

Conron et al. (45) Date of Patent: Jan. 12, 2016
(54) SHORT STRING COMPRESSION USPC oot 341/87, 106, 107
See application file for complete search history.
(71) Applicant: THOMSON REUTERS GLOBAL
RESOURCES, Baar (CH) (56) References Cited
(72) Inventors: Joseph P. Conron, Sayville, NY (US); U.S. PATENT DOCUMENTS
Saul M. Nadata, Norfolk, NY (US) 4,761,761 A /1988 Sekicuchi
. 6,196,466 Bl 3/2001 Schuessler
(73) Assignee: Thomson Reuters Global Resources, 6,570,511 B1* 5/2003 COOPEr ..oorvvveeeeirrrrrreces 341/59
Baar (CH) 6,603,414 B1* 8/2003 Postas 341/87
7,327,293 B2* 2/2008 Foster 341/103
(*) Notice: Subject to any disclaimer, the term of this 8,063,800 B2* 11/2011 Schuessler 341/90
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 410 days.
International Search Report and Written Opinion issued Jul. 10,2013
(21) Appl. No.: 13/867,199 in the related PCT application PCT/US13/37550.
(22) Filed: Apr. 22,2013 * cited by examiner
(65) Prior Publication Data Primary Examiner — Brian Young
(74) Attorney, Agent, or Firm — Bartholomew J. DiVita;
US 2013/0318093 Al Nov. 28, 2013 Jeanpierre J. Giuliano; Katy Chan-Parsons
Related U.S. Application Data (57) ABSTRACT
(60) Provisional application No. 61/650,637, filed on May Systems and techniques are disclosed to express sequences of
23, 2012. codes, and in particular sequences of ASCII characters, in a
lossless compressed format. The techniques may include
(1) Int. CL dividing a universe of expressible codes into smaller subsets,
HO3M 7/30 (2006.01) called code sets, such that every code exists within one code
GOG6F 17/30 (2006.01) set, but no code exists within two code sets. The code sets are
(52) US.CL then utilized for compression based on the heuristic that it is
CPC GO6F 17/30312 (2013.01); HO3M 7/30 more likely that a next code in the sequences of codes is in the
(2013.01); HO3M 7/3059 (2013.01); HO3M same code set as a previous code in the sequences of codes,
7/3084 (2013.01) rather than that the next code in sequences of codes being in
(58) Field of Classification Search any other code set (sentence structure).

CPC ... HO3M 7/3084; HO3M 7/3059; HO3M 7/30;
GOGF 17/30312

16 Claims, 9 Drawing Sheets

ACCESS A FIRST SET OF
CHARACTERS TO BE EXCODED

-

l

REPRESENTATION FOR
SUBSEQUENCE

ASSOCIATE EACH CHARACTER IN
THESET OF CHARACTERSTO A [Ldn
PRE-DEFINED CODE SET
COMPUTE SIGNALER BIT FOR i
SUBSEQUENCE
! 5
COMPUTE CODE SET SRVTR L

GENERATE ENCODED STREAM
USING SIGNALER BIT, CODE SET

REPRESENTATION, AND INDEX

(24
M compure inpex VALUE(S) INTO

VALUE

CODE SET

NO

<4

CODE
SEQUENCE
COMPLETE?

<8

GENERATE ENCODED STREAM
USING SIGNALER BIT, CODE SET
REPRESENTATION, INDEX VALUE,
AND TERMINATOR CODE

e

COMPUTE TERMINATOR
CODE

U.S. Patent Jan. 12, 2016 Sheet 1 of 9 US 9,235,610 B2
1
A
SERVER DEVICE
PROCESSOR RANDOM INPUT/QUTPUT
ACCESS DEVICES
MEMORY
AQ.X { % A
NON VOLATILE MEMORY
ENCODER DECODER
MODULE MODULE
Loy Lae
28
DATA STORE
CODESET 1 CODESET 2 CODESET3 CODESET 4
é. 204 2;39% 2» o 2; 20D
& a
228 304 -33AR 0 [324
UNENCODED ENCODED ENCODED UNENCODED
DATA DATA DATA DATA
v
.—"“"‘M
/
NETWORK
\ 24

FIG. 1

U.S. Patent Jan. 12, 2016 Sheet 2 of 9 US 9,235,610 B2

START

A
ACCESS A FIRSTSET OF
CHARACTERS TO BE ENCODED

- O

4
ASSOCIATE EACH CHARACTER IN
THE SET OF CHARACTERS TO A Lo
PRE-DEFINED CODE SET

COMPUTE SIGNALER BIT FOR
e
SUBSEQUENCE it END
L &
5. &\ S
COMPUTE CODE SET b
REPRESENTATION FOR GENERATE ENCODED STREAM
SUBSEQUENCE USING SIGNALER BIT, CODE SET
" ‘L REPRESENTATION, AND INDEX
R COMPUTE INDEX VALUE(S) INTO VALUE
e CODE SET
<8
el - -
§O- s S'NGLE ' YES GENERATE ENCODED STREAM
USING SIGNALER BIT, CODESET ||

CODE ?

REPRESENTATION, INDEX VALUE,
AND TERMINATOR CODE

NO
B 6
S / <
CODE YES COMPUTE TERMINATOR
SEQUENCE s " CODE
COMPLETE?

FIG. 2

U.S. Patent Jan. 12, 2016 Sheet 3 of 9 US 9,235,610 B2

START

y
ACCESS ENCODED STREAM

. (O

y
DETERMINE IF SIGNALER BIT
INDICATES SINGLE CODE Lo

W
SEQUENCE OR MULTICODE
SEQUENCE

y
ASSOCIATE CODE SET SN
REPRESENTATION WITH NEXT /., 7‘1&

CODE IN ENCODED STREAM -
$ Ll GENERATE ASCIl DATA STREAM

g USING ACCESSED CODE

ACCESS CODE IN CODE SET B8Y
INDEX VALUE

iS5 SINGLE
CODE
SEQUENCE?

GENERATE ASCH DATA STREAM
USING ACCESSED CODES FROM
CODE SETS

, 1S
---------- < TERMINATOR
' CODE?

FiG. 3

U.S. Patent Jan. 12, 2016 Sheet 4 of 9 US 9,235,610 B2

Example Code Sets

) Upper case letters plus some symbols {31 codes}: ABCDEFGHUKLMNOPORSTUVWXYZ-/:@_
“7 &{1} Lower case letters {26 codes): abedefghijkimnopgrstuvwxyz

) Most symbols {27 codes): W5%2&*(}=+[{I}H\;”'<,>?" and the space character ('}

} Numbers, and the single dot character {11 codes): 0123456789 and the dot .’ character

FIG. 4

U.S. Patent Jan. 12,2016

Sheet 5 of 9 US 9,235,610 B2

e
[g

Code set signaler length | Code length | Minimum number of sequential
in bits in bits codes to express in one multiple-

code subsequence, instead of
several one-code subsequences

1 1 2 {5 bits instead of 6 bits)

i 2 3 {10 bits instead of 12 bits)

i 3 3 {14 bits instead of 15 bits}

i 4 4 {22 bits instead of 24 bits}

i 5 4 {27 bits instead of 28 bits}

1 6 5 {38 bits instead of 40 bits)

2 i 2 {6 bits instead of 8 bits)

2 2 2 {9 bits instead of 10 bits}

2 3 3 {15 bits instead of 18 bits}

2 4 3 {19 bits instead of 21 bits}

2 5 3 {23 bits instead of 24 bits}

2 6 4 {33 bits instead of 36 bits)

FiIG. 5

U.S. Patent

Jan. 12, 2016

Sheet 6 of 9

Go
gf

US 9,235,610 B2

Number of Expressionasa | Expression Worksheet for the multiple code

sequential series of single- | as one

codesinthe | code muitiple-

same code sat | subsequences code

subsequence

1 7 bits 11 bits 1-bit signaler, 2-bit code set, 4-bit code, 4-bit
terminator

2 14 bits 15 bits 1-bit signaler, 2-bit code set, 4-bit code, 4-hit code, 4-
bit terminator

3 21 bits 19 bits 1-bit signaler, 2-bit code set, 4-bit code, 4-bit code, 4-

bit code, 4-bit terminator

FIG. 6

U.S. Patent

Jan. 12, 2016

Sheet 7 of 9

4

e

US 9,235,610 B2

Number of Expressionasa | Expression Workshaet for the multiple code

sequential series of single- | asone

codes in the code multiple-

same code set | subseguences code

subseguence

1 8 bits 13 bits 1-bit signaler, 2-bit code sef, 5-bit code, 5-bit
terminator

2 16 hits 18 bits i-hit signaler, 2-bit code set, 5-bit code, 5-bit code, 5-
bit terminator

3 24 bits 23 bits 1-bit signaler, 2-bit code set, 5-hit code, 5-bit code, 5-

bit code, 5-bit terminator

FiG. 7

U.S. Patent Jan. 12, 2016 Sheet 8 of 9 US 9,235,610 B2

O
/i

GBP/CHF##227GBPCHF1S (20 characters) consists of the following subsequences

code set 0 {7 codes “GBP/CHF”, 43 bits) +— /O 4

code set 2 {2 cades "#4”, 16 bits, signaled as two one-code setsh_ 4O g\g
code set 3 (3 codes “227”, 19 bits) ~~_.. iod .

code set 0 (6 codes "GBPCHF”, 38bits) —2.. /22 D

code set 0 {1 code “1", 7 bits}—2_. o &=

code set 3 (1 code “S”, B bits) —1_. ;.2 2 &

FIG. 8

U.S. Patent Jan. 12, 2016 Sheet 9 of 9 US 9,235,610 B2

el

UBSFEED@ _~_18300188629360002120113094556091-A1_2_ (49 characters} consists of the following
subsequences:

code set 0 (8 codes "UBSFEED@", 48 bits) —— /0 ¥ #

code set 2 (3 codes ©_A_”, 23 bitsj—e- /0¥ &

code set 3 (32 codes “18300188629360002120113094556091", 135 bits)—2- /OH
code set 0 (2 codes “-A”, 16 bits, signaled as two one-code sets) —=— /O ¥ D

code set 3 {1 codes “17, 7 bits)—e. /0¥ &£

code set 2 {3 cades “_*_", 23 bits) 2. st &

FIG. 9

US 9,235,610 B2

1
SHORT STRING COMPRESSION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation 61/650,637 filed on May 23, 2012, the content of
which is incorporated herein in its entirety.

TECHNICAL FIELD

This disclosure relates to compression techniques, and
more particularly to systems and methods for encoding and
decoding short sequences of characters.

BACKGROUND

Today, much of computer science involves the storage and
transmission of sequences of short codes. Example short
codes include, but are not limited to, the file and directory
names used by operating systems, chat conversations having
very short statements, and website URL’s defined by a single
short sequence of characters within a limited character uni-
verse.

For purposes of both storage and transmission, it is advan-
tageous to represent these and other short codes in as few
bytes (indeed, bits) as possible. A typical uncompressed
encoding of printable ASCII codes uses 8-bits (or 1 byte) per
code. Many of today’s encoding schemes may use more than
1 byte per code, as they can represent a universe of codes
greater in size than two-hundred and fifty-six (256), which is
the largest number of discrete codes which can be represented
using binary in eight (8) bits.

Many of today’s compression algorithms identify patterns
in the codes they read, and then exploit the identified patterns
by creating a dynamic dictionary that is used to express sub-
sequent occurrences of the patterns in the codes more com-
pactly. This approach, while useful for long sequences, pro-
vides limited value for the shorter sequences of codes that
dominate computer science. Most lossless data compression
algorithms, such as the Lempel-Ziv (‘L.Z’) compression
methods and their many variants, yield poor results when
used with short code sequences. The results are considered
poor because the encoded output contains more bits than were
present in the original sequence, resulting in expansion, not
compression, of the short code sequences.

Accordingly, there exists a need to have a simple, quick-
to-execute, lossless method of encoding and decoding short
sequences of information.

SUMMARY

Systems and techniques are disclosed to express sequences
of codes, and in particular sequences of ASCII characters, in
a lossless compressed format. The techniques may include
dividing a universe of expressible codes into smaller subsets,
called code sets, such that every code exists within one code
set, but no code exists within two code sets. The code sets are
then utilized for compression based on the heuristic that it is
more likely that a next code in the sequences of codes is in the
same code set as a previous code in the sequences of codes,
rather than that the next code in sequences of codes being in
any other code set.

The systems and techniques may be beneficial for very
short code sequences for which many industry-standard com-
pression algorithms offer limited compression at significant
time cost. As such, the systems and techniques offer improved

10

15

30

40

45

50

2

compression for short sequences meeting certain heuristic
patterns with less complexity of expression.

Various aspects of the disclosure relate to associating code
subsets with a first code sequence including a set of characters
and generating a second code sequence from the set of char-
acters using less storage than the first code sequence.

For example, according to one aspect, a computer-imple-
mented method of encoding a sequence of characters includes
accessing, from a computer device, a set of characters con-
forming to a first format, and associating, at the computer
device, one of a plurality of code subsets to each of the set of
characters. The method also includes generating, at the com-
puter device, a code sequence representing the set of charac-
ters. The generated code sequence conforms to a second
format using fewer bits than the first format and includes a
first indicator for specifying a single-code sequence or a
multi-code sequence, a second indicator for specifying the
one of the plurality of code subsets associated with the set of
characters, and a third indicator for specifying an index value
into the one of the plurality of associated code subsets corre-
sponding to the set of characters.

In one embodiment, the second format further includes a
fourth indicator for specifying an end position of the code
sequence. The method may also include determining whether
to generate the code sequence as a single-code sequence or a
multi-code sequence.

A system, as well as articles that include a machine-read-
able medium storing machine-readable instructions for
implementing the various techniques, are disclosed. Details
of various implementations are discussed in greater detail
below.

The systems and techniques may be beneficial for very
short sequences of codes, of the type for which many indus-
try-standard compression techniques offer limited compres-
sion at significant time cost. The systems and techniques may
also provide improved compression for short code sequences
meeting certain heuristic patterns, at a reduced computational
cost with less complexity of expression.

Additional features and advantages will be readily appar-
ent from the following detailed description, the accompany-
ing drawings and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a schematic of an exemplary system for encoding
and decoding sequences of characters.

FIG. 2 illustrates an exemplary method of encoding
sequences of characters.

FIG. 3 illustrates an exemplary method of decoding
encoded sequences of characters.

FIG. 4 illustrates an exemplary set of code subsets.

FIG. 5 illustrates points of efficiency associated with the
method shown in FIG. 2.

FIG. 6 illustrates an example worksheet for four (4) bit
codes.

FIG. 7 illustrates an example worksheet for five (5) bit
codes.

FIG. 8 illustrates a first example of encoding using the
method shown in FIG. 2.

FIG. 9 illustrates a second example of encoding using the
method shown in FIG. 2.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

FIG. 1 shows a computer-based system 10 for rapid encod-
ing and decoding short sequences of characters. As shown in

US 9,235,610 B2

3

the FIG. 1 example, the system 10 includes a server device 12
configured to include a processor 14, such as a central pro-
cessing unit (CPU), random access memory (‘RAM”) 16, one
or more input-output devices 18, such as a display device (not
shown) and keyboard (not shown), and non-volatile memory
20, all of which are interconnected via a common bus 22 and
controlled by the processor 14. In one embodiment, as shown
in FIG. 1, the non-volatile memory 20 is configured to include
an encoder module 24 for encoding short sequences of char-
acters, and a decoder module 26 for decoding encoded
sequences of characters. Details of the encoder module 24
and decoder module 26 are discussed in greater detail below.

The system 10 may be configured to include an access
device (not shown) that is in communication with the server
device 12 over a network 34. The access device can include a
personal computer, laptop computer, or other type of elec-
tronic device, such as a cellular phone or Personal Digital
Assistant (PDA). In one embodiment, for example, the access
device is coupled to I/O devices (not shown) that include a
keyboard in combination with a pointing device such as a
mouse for sending requests to the server device 12. Prefer-
ably, memory of the access device is configured to include a
browser that is used to request and receive information from
the server device 12 over the network 34.

The server device 12 includes a data store 28 that includes
one or more set of expressible codes. In one embodiment, the
one or more set of expressible codes are stored into smaller
subsets, illustrated as code sets 30A-D in FIG. 1, such that
every code of a universe of codes exists within one code set,
but no code exists within two code sets. While four (4) code
sets 30A-D are illustrated in FIG. 1, the present disclosure is
not limited to four (4) code sets.

The code sets 30A-D may be utilized by the encoder mod-
ule 24 for compression and by the decoder module 26 for
decompression. In one embodiment, the code sets 30A-D are
based on the heuristic that it is more likely that a next code in
a sequence is in the same code set as the previous code in the
sequence, rather than the next code in the sequence being
identified in any other code set. Advantageously, this heuristic
is true for most expressible data. For example, considering the
printable English language, a sentence typically consists of a
single capital letter, followed by several lowercase letters. If
an English sentence includes a number digit, it is more likely
that the next character in the sequence is another number digit
rather than another lowercase letter. If the sentence includes
an acronym, an upper case letter is more likely to be followed
by another upper case letter as compared to a sentence with-
out an acronym.

Accordingly, in one embodiment, the encoder module 24 is
configured to divide expressible codes into code sets 30A-D
which meet the before-mentioned heuristic, resulting in fewer
bits being required to express each code within a code set. The
encoder module 24 then stores the code sets 30A-D inthe data
store 28. An example of four (4) code sets 76 A-D with respec-
tive codes established by the encoder module 24 is shown in
connection with FIG. 4.

The data store 28 shown in FIG. 1 may be any medium
suitable for storing electronic data information. For example,
in one embodiment, the data store 28 is a relational database.
In another embodiment, the document data store 28 is a
directory server, such as a Lightweight Directory Access Pro-
tocol (‘LDAP’) server. In yet another embodiment, the data
store 28 is a configured area in the non-volatile memory 20 of
the device server 12. Although the data store 28 shown in FI1G.
1 is part of the server device 12, it will be appreciated by one

10

15

20

25

30

35

40

45

50

55

60

65

4

skilled in the art that the data store 28 may be distributed
across various servers and be accessible to the server device
12 via a network 34.

The network 34 can include various devices such as rout-
ers, servers, and switching elements connected in an Intranet,
Extranet or Internet configuration. In one embodiment, the
network 34 uses wired communications to transfer informa-
tion between the access device and the server device 12. In
another embodiment, the network 34 employs wireless com-
munication protocols. In yet other embodiments, the network
34 employs a combination of wired and wireless technolo-
gies.

In one embodiment, as shown in FIG. 1, unencoded data
32A (e.g., data represented in any standard data format, such
as the American Standard Code for Information Interchange
(ASCII) or Extended Binary Coded Decimal Interchange
Code (EBCDIC)) and encoded data 32B (e.g., data repre-
sented in accordance with an encoding technique described
herein) are transmitted to and received from the server device
12 for encoding and decoding, respectively. Exemplary unen-
coded data includes, but is not limited to, file names, directory
names, chat conversations and messages, website Uniform
Resource Locators (‘URLs’), and metadata.

Turning now to FIG. 2, a method executed by the encoder
module 24 to encode a sequence of characters into an encoded
stream is disclosed. As shown in FIG. 2, at step 40, the
encoder module 24 first accesses a set of characters to be
encoded. In one embodiment, the set of characters is received
at the server device 12 as unencoded data 32A over the net-
work 34. Next, at step 42, the encoder module associates each
character in the set of characters to one of the code sets
previously defined by the encoder module 24. Next, at step
44, the encoder module 24 computes a signaler bit for a
subsequence of characters in the sequence of characters to be
encoded. Every subsequence of characters generated in the
encoded stream begins with a single signaler bit. In one
embodiment, the encoder module 24 sets a bit value of zero
(0) in the encoded stream to indicate the beginning of a
multi-code sequence and a bit value of one (1) to indicate the
beginning of a single-code sequence. Details of generating a
multi-code sequence and single-code sequence are discussed
below.

Next, at step 46, the encoder module 24 determines a code
set representation for the encoded subsequence. In one
embodiment, the encoder module 24 follows the signaler bit
by a representation ofthe code set with which the next code in
the character sequence is associated.

Example code sets representing the universe of printable
ASCII characters, ninety-five (95) codes in all, are shown in
FIG. 4. As shown in the FIG. 4 example, the encoder module
24 organized the ninety-five (95) codes into four (4) code sets
76A-D each requiring two bits to signal each code set (e.g.,
bits ‘00’ representing code set zero (0), bits ‘01° representing
code set one (1), bits ‘10’ representing code set two (2), and
bits ‘11” represent code set three (3)). The choice of this
particular division (i.e., four (4) code sets) by the encoder
module 24 may be based on an analysis of a specific type of
data transmitted electronically when financial systems com-
municate. Within financial systems, typically there are num-
bers (code set 3), all capital identifiers (code set 0), and all
lowercase identifiers (code set 1). By recognizing this pattern,
the division into these code sets meets the heuristic, and
achieves advantageous compression. Of course, as will be
appreciated by one skilled in the art, an examination of dif-
ferent universes of data may identify other divisions more
suitable for achieving the heuristic.

US 9,235,610 B2

5

Referring back to FIG. 2, once the code set representation
for a subsequence is computed, at step 48, the encoder module
24 computes index values into the respective code set. In one
embodiment, an individual code within each code set is rep-
resented by the minimum number of bits required to express
its index within the code set. For example, referring back to
FIG. 4, the first code set 76 A contains thirty one (31) codes,
requiring five bits for expression of any index. Thus, five (5)
0 bits ‘00000’ signal the first index, or ‘A’. Similarly, the bits
‘00111°, when used in conjunction with the first code set 76 A,
relate to the seventh index, or ‘G’. By contrast, the third code
set 76C contains only eleven codes (11), requiring four (4)
bits for expression. As such, the first index of the third code set
76C, or ‘0’, is expressible as four (4) 0 bits “0000°.

Next, at step 50, the encoder module 24 determines
whether a single code sequence is to be generated. In one
embodiment, the encoder module 24 determines whether a
single code sequence is to be completed based on the value of
the signaler bit. If the signaler bit value is one (1), a single-
code sequence is determined and the subsequence expression
is complete. The next bit will be a new signaler bit. Lastly, at
step 52, the encoder module 24 generates the encoded stream
by concatenating the computed signaler bit, code set repre-
sentation, and index value.

Otherwise, at step 54, if the signaler bit value is zero (0), the
encoder module 24 determines that a multiple-code sequence
is to be generated and whether an additional code sequence is
to follow. If an additional code sequence is to follow, at step
48, the encoder module 24 computes the next index value into
the respective code set, bypasses step 50 and proceeds to step
54. If the code sequence is complete, at step 56, the encoder
module 24 generates a terminator code for the subsequence
and at step 58, generates the encoded subsequence using the
computed signaler bit, code set representation, index value
and terminator code.

In one embodiment, the terminator code is an implicit final
code in each code set. For example, referring to the example
code set (0) 76A in FIG. 4 which contains thirty-one (31)
codes, the thirty-second (32) code is the terminator code,
expressible as five bits of one (11111). In one embodiment,
the encoder module 24 computes the terminator code for a
code set as a series of 1-bits the length of which is equivalent
to the expression of any code in the code set. The length of a
code set is computed by the encoder module 24 to be one
longer than the number of codes within the set.

As the terminator code requires bits for its expression, it is
generally inefficient to express a single code as a multiple-
code subsequence (signaler bit, code set, code bits, terminator
bits) when it could be expressed as a single-code subsequence
(signaler bit, code set, code bits). Thus, the encoder module
24 does not encode a multiple-code subsequence until it
crosses a point of efficiency, hereinafter referred to as a “tip-
ping point’, which may be variable based on the number of
bits required to express a code, and the number of bits
required to express a code set. In most instances, the tipping
point at which it is more efficient to express a code in one
multiple-code subsequence is very low.

FIG. 5 illustrates example points of efficiency 80 associ-
ated with the encoding method shown in FIG. 2. In one
embodiment, the encoder module 24 expresses sequences of
codes as either several one-code subsequences or one mul-
tiple-code subsequence depending upon the code set signaler
length and code length. For example, in one embodiment as
shown in FIG. 5, the encoder module 24 represents a mini-
mum of two (2) sequential codes as one multiple-code sub-
sequence instead of two (2) one-code sequences when the
code set signaler length in bits associated with the sequential

10

15

20

25

30

35

40

45

50

55

60

65

6

codes is one (1) and the code length in bits is one (1), as five
(5) bits instead of six (6) bits may be utilized to express the
sequential codes as one multiple-code sequence.

Similarly, considering a code set signaler length in bits of
two (2) and a code length in bits of three (3), the minimum
number of sequential codes used by the encoder module 24 to
express one multiple-code subsequence instead of several
one-code subsequences is three (3), as fifteen (15) bits instead
of'eighteen (18) bits may be utilized to express the sequential
codes as one multiple-code sequence.

FIG. 6 illustrates an example worksheet 90 showing points
of efficiency associated with the example code set three (3)
76D (4 bit codes) shown in FIG. 4. As shown in the FIG. 6
example, in one embodiment, the encoder module 24
expresses sequential codes as one multiple code sequence
once the number of bits required to express single-code sub-
sequences exceeds that of multiple-code subsequences. In the
example shown in FIG. 6, once the number of sequential
codes in the same code set is three (3), the encoder module 34
encodes one multiple-code subsequence that utilizes nineteen
(19) bits instead of three (3) separate single-code subse-
quences requiring twenty-one (21) bits. FIG. 7 illustrates an
example worksheet 100 showing points of efficiency associ-
ated with five (5) bit codes (e.g., example code set zero (0)
76A, code set one (1) 76B, and code set two (2) 76C.

As such, the encoder module 24 computes the tipping point
based on the crossing point of the following two values:
encoding in single-code subsequences (number of sequential
codes*(1+code set signaler length+code length)); and encod-
ing in one multiple-code subsequence ((1+number of sequen-
tial codes)*code length+1+code set signaler length). In one
embodiment, for example, the encoder module 24 determines
whether is it more efficient to use a multiple code-set subse-
quence rather than a single-code subsequence using the fol-
lowing algorithm:

N¥(1+C+L)>(1+N)y*L+C

where

N=the length of sequential codes in the same subsequence,

C=the number of bits in the code set signaler,

L=the number of bits in a code.

Using the before-mentioned techniques, optimal compres-
sion is achievable when all codes in a sequence are in the same
code set. For example, referring to the example code sets of
FIG. 4, sequential codes in code set three (3) may be
expressed in forty-nine percent (49%) fewer bits than full
ASCII encoding. Even for sequences as short as thirty-two
(32) codes, the above-described techniques may achieve
forty-seven percent (47%) compression for code set three (3),
or thirty-four percent (34%) compression for any other code
set, compared to full ASCII representation.

While the applicability of the techniques disclosed herein
is broad and across computer science, FIGS. 8 and 9 illustrate
two (2) examples selected from the field of financial trading,
and in particular, from real-world order reference identifiers
passed between market data providers and their consumers
within Financial Information eXchange (‘FIX’) messages. As
many market data providers have adopted FIX for their mes-
saging schemes, and, as market data volume increases, the
bandwidth required for market data has also increased, and
compression of FIX messages is necessary and growing. Fur-
ther, as market data is a real-time commodity, the value of
market data decreases in value based on the amount of time
required to decode, thus the techniques disclosed herein are
applicable in areas in which speed of encoding and decoding
is extremely important.

US 9,235,610 B2

7

With reference to FIGS. 4 and 8, a first example of encod-
ing by the encoder module 24 is shown. As shown in the FIG.
8 example, in one embodiment, the encoder module 24
encodes the first seven (7) codes ‘GBP/CHF’ 102 A of sample
unencoded data 102 using one multiple-code sequence
requiring 43 bits (1-bit signaler, 2-bit code set, 7*5-bit code
(28), 5-bit terminator). The bit stream associated with these
seven characters is 1-00-00110-00010-01111-11011-00010-
00111-001010-11111 wherein a “-” is used to separate the
fields described in the parenthetical of the previous sentence
for readability purposes and the character “A” is represented
by “00000”. The encoder module 24 then encodes the next
two characters “##” 102B of the unencoded data 102 as two
one-code sets requiring 16 bits. Once encoding of the unen-
coded data 102 is complete, the encoded sequence utilizes
one-hundred and thirty one (131) bits resulting in an eighteen
percent (18%) compression. In comparison, applying a stan-
dard JAVA zip library to the unencoded data 102 produces a
compressed size of twenty six (26) bytes, which is more
inefficient than the uncompressed encoding of the original
twenty (20) bytes of unencoded data 102.

With reference to FIGS. 4 and 9, a second example of
encoding by the encoder module 24 is shown. Similar to the
example shown in FIG. 8, the encoder module 24 associates
each code in the unencoded data 104 to one of the code sets
and computes the number of bits needed to express each
subsequence. Once encoding of the unencoded data 104 is
complete, the encoded sequence utilizes a total of two-hun-
dred and fifty two (252) bits resulting in a thirty six percent
(36%) compression. In comparison, applying a standard
JAVA zip library to the unencoded data 104 produces a com-
pressed size of fifty-six (56) bytes, which again is more inef-
ficient than the uncompressed encoding of forty-nine (49)
bytes for the unencoded data 104.

The data examples shown in FIGS. 8 and 9 utilized a binary
expression of the index of a code within a code set. For
example, example the third code set 76C shown in FIG. 4,
which contained eleven (11) codes plus the terminator code,
ortwelve (12) codes total, utilizes four (4) bits per code within
the set, as four (4) binary bits can represent up to sixteen (16)
different values, from 0000 to 1111. Thus, in the example
shown in FIG. 9, thirty-two (32) sequential numerical codes
may be represented in one-hundred and thirty-five (135) bits,
with one-hundred and twenty eight (128) code bits, four (4)
terminator bits, plus a header of one (1) signaler bit and two
(2) code set bits.

In another embodiment, however, these thirty-two (32)
codes may be represented as a sequence of numbers, in base-
32, and then encoded in binary. This embodiment would
result in one-hundred and four (104) bits being required to
express the thirty-two (32) codes and the signaler code, yield-
ing one-hundred and five (105) bits total, or an additional
twenty percent (20%) compression vs. the binary representa-
tion of the same subsequence. This compression is achievable
as binary representation is more efficient around expressions
of powers of two (2), whereas base-12 is more efficient
around expressions with twelve (12) possible values for each
position.

Accordingly, the disclosed techniques may be utilized to
express codes (and code sets) in base-required-length num-
bers which are then encoded in binary, rather than being
expressed in pure binary. Further, it is worthwhile to note the
tradeoff between computational complexity (i.e., speed of
encoding and decoding) and quality of compression. That is,
one embodiment may emphasize computational speed over
compression quality and choose a pure binary expression of
the encoded sequences, whereas another embodiment may

10

15

20

25

30

35

40

45

50

55

60

65

8

emphasize compression quality over computational speed
may select a base-code-set-length expression of a code.

Additional variations of the above-described encoding
technique may also be implemented. For example, in one
embodiment, the encoding technique for multiple-code sets is
represented as signaler bit, code set bits, multiple codes, and
terminator code. In another embodiment, the encoding tech-
nique defines multiple code sets as signaler bit, code set bits,
fixed-length-prefix determining the number of codes, and
multiple codes. The latter embodiment may be advantageous
when the number of bits required to express a code exceeds
the typical number of codes found in the same subsequence.

For example, if twenty (20) bits are used to express a code,
but subsequences are rarely longer than sixteen (16) succes-
sive codes, a 4-bit prefix, as opposed to a 20-bit suffix, would
be advantageous. Further, the use of this length-first prefix
may be mixed with the use of a terminator suffix code. An
encoder/decoder pair may make the determination per code
set, whether to include a terminator code, or use a prefix, with
a different length prefix for each code set.

Turning now to FIG. 3, a method executed by the decoder
module 26 to decode encoded sequences of characters is
disclosed. As shown in FIG. 3, at step 60, the decoder module
26 accesses an encoded data stream. Next, at step 62, the
decoder module 26 determines if the signaler bit included in
the encoded stream indicates a single-code sequence or multi-
code sequence and, at step 64, the decoder module 26 asso-
ciates a code set representation with the next code in the
encoded stream.

Once a code set representation is associated, at step 66, the
decoder module 26 accesses a code in the code set based on
the index value included in the encoded stream. Next, at step
68, the decoder module 26 determines if the encoded stream
is a single-code sequence based on the signaler bit. If the
encoded stream is a single-code sequence, at step 74, the
decoder module 26 generates an ASCII data stream using the
accessed code from step 66. Otherwise, at step 70, the
decoder module 26 determines whether the code being ana-
lyzed in the encoded stream is a terminator code. If the code
being analyzed is a terminator code, at step 72, the decoder
module 26 generates the ASCII data stream using the
accessed codes from the code sets. Otherwise, the decoder
module 26 repeats steps 64-66 and 70 until the terminator
code is determined and then, at step 72, generates the ASCII
data stream from the encoded stream using accessed codes
from code sets.

Various features of the system may be implemented in
hardware, software, or a combination of hardware and soft-
ware. For example, some features of the system may be
implemented in one or more computer programs executing on
programmable computers. Each program may be imple-
mented in a high level procedural or object-oriented program-
ming language to communicate with a computer system or
other machine. Furthermore, each such computer program
may be stored on a storage medium such as read-only-
memory (ROM) readable by a general or special purpose
programmable computer or processor, for configuring and
operating the computer to perform the functions described
above.

What is claimed is:
1. A computer-implemented method of encoding a
sequence of characters comprising:
accessing, from a computer device, a set of characters
conforming to a first format;
associating, at the computer device, one of a plurality of
code subsets to each of the set of characters; and

US 9,235,610 B2

9

generating, at the computer device, a code sequence rep-
resenting the set of characters, the code sequence con-
forming to a second format using fewer bits than the first
format, wherein the second format includes a first indi-
cator for specifying a single-code sequence or a multi-
code sequence, a second indicator for specifying the one
of'the plurality of code subsets associated with the set of
characters, and a third indicator for specifying an index
value into the one of the plurality of associated code
subsets corresponding to the set of characters.

2. The method of claim 1, wherein the second format
further comprises a fourth indicator for specifying an end
position of the code sequence.

3. The method of claim 1, further comprising determining
whether to generate the code sequence as a single-code
sequence or a multi-code sequence.

4. The method of claim 1, further comprising associating
each character of the set of characters with one of the plurality
of code subsets.

5. A computer-implemented method of decoding a
sequence of encoded characters comprising:

accessing, from a computer device, a set of encoded char-

acters conforming to a first format, the first format
including a first indicator indicating whether the set of
encoded characters is a single-code sequence or a multi-
code sequence, a second indicator indicating one of a
plurality of code subsets associated with the set of
encoded characters, and a third indicator indicating an
index value into one of the plurality of associated code
subsets corresponding to the set of encoded characters;
and

generating, at the computer device, a sequence of unen-

coded characters conforming to a second format, the
second format using more bits than the first format.
6. The method of claim 5, wherein the second format is an
ASCII format.
7. The method of claim 5, wherein the first format further
comprises a fourth indicator indicating an end position of the
sequence of encoded characters.
8. A system comprising:
a server including a processor and memory storing instruc-
tions that, in response to receiving a request for access to
a service, cause the processor to:

access, from the memory, a set of characters conforming to
a first format;

associate, in the memory, one of a plurality of code subsets

to each of the set of characters;

generate, at the server, a code sequence representing the set

of characters, the code sequence in conformity with a
second format using fewer bits than the first format,
wherein the second format includes a first indicator to
specify a single-code sequence or a multi-code
sequence, a second indicator to specify the one of the
plurality of code subsets associated with the set of char-
acters, and a third indicator to specify an index value into
the one of the plurality of associated code subsets cor-
responding to the set of characters;

generate, at the server, a signal associated with the code

sequence in conformity with the second format; and
transmit the signal.

9. The system of claim 8, wherein the second format further
comprises a fourth indicator for specifying an end position of
the code sequence.

10. The system of claim 8, wherein the memory stores
instructions that, in response to receiving the request, cause
the processor to associate each character of the set of charac-
ters with one of the plurality of code subsets.

10

15

20

25

30

35

40

45

50

55

60

65

10

11. A system comprising:

a server including a processor and memory storing instruc-
tions that, in response to receiving a request for access to
a service, cause the processor to:

access, from the memory, a set of encoded characters con-
forming to a first format, the first format including a first
indicator indicating whether the set of encoded charac-
ters is a single-code sequence or a multi-code sequence,
a second indicator indicating one of a plurality of code
subsets associated with the set of encoded characters,
and athird indicator indicating an index value into one of
the plurality of associated code subsets corresponding to
the set of encoded characters;

generate, at the server, a sequence of unencoded characters
conforming to a second format, the second format using
more bits than the first format;

generate, at the server, a signal associated with the
sequence of unencoded characters in conformity with
the second format; and

transmit the signal.

12. The system of claim 11, wherein the second format is
an ASCII format.

13. The system of claim 11, wherein the first format further
comprises a fourth indicator indicating an end position of the
sequence of encoded characters.

14. An article comprising a non-transitory machine-read-
able medium storing machine-readable instructions that,
when applied to the machine, cause the machine to:

access, on the machine, a set of characters conforming to a
first format;

associate, on the machine, one of a plurality of code subsets
to each of the set of characters; and

generate, on the machine, a code sequence representing the
set of characters, the code sequence in conformity with
a second format using fewer bits than the first format,
wherein the second format includes a first indicator to
specify a single-code sequence or a multi-code
sequence, a second indicator to specify the one of the
plurality of code subsets associated with the set of char-
acters, and a third indicator to specify an index value into
the one of the plurality of associated code subsets cor-
responding to the set of characters.

15. An article comprising a non-transitory machine-read-
able medium storing machine-readable instructions that,
when applied to the machine, cause the machine to:

access, on the machine, a set of encoded characters con-
forming to a first format, the first format including a first
indicator indicating whether the set of encoded charac-
ters is a single-code sequence or a multi-code sequence,
a second indicator indicating one of a plurality of code
subsets associated with the set of encoded characters,
and athird indicator indicating an index value into one of
the plurality of associated code subsets corresponding to
the set of encoded characters;

generate, on the machine, a sequence of unencoded char-
acters conforming to a second format, the second format
using more bits than the first format.

16. A computing device comprising:

a processor;

a memory operatively coupled to the processor, the
memory storing instructions that, in response to receiv-
ing a request, cause the processor to:

access, using the memory, a set of characters conforming to
a first format;

associate, at the computing device, one of a plurality of
code subsets to each of the set of characters; and gener-
ate, at the computing device, a code sequence represent-

US 9,235,610 B2

11

ing the set of characters, the code sequence conforming
to a second format using fewer bits than the first format,
wherein the second format includes a first indicator for
specifying a single-code sequence or a multi-code
sequence, a second indicator for specifying the one of
the plurality of code subsets associated with the set of
characters, and a third indicator for specifying an index
value into the one of the plurality of associated code
subsets corresponding to the set of characters.

#* #* #* #* #*

10

12

